- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources2
- Resource Type
-
0000000002000000
- More
- Availability
-
11
- Author / Contributor
- Filter by Author / Creator
-
-
Bell, Donovan A (2)
-
Lodmell, Angela (2)
-
Painter, Sally (2)
-
Whiteley, Andrew R (2)
-
Amish, Stephen J (1)
-
Barfoot, Craig (1)
-
Carim, Kellie J (1)
-
Eby, Lisa A (1)
-
Kovach, Ryan (1)
-
Kovach, Ryan P (1)
-
Larkin, Beau (1)
-
Leary, Robb F (1)
-
Ramsey, Philip (1)
-
Rosenthal, Leo (1)
-
Smith, Seth (1)
-
#Tyler Phillips, Kenneth E. (0)
-
#Willis, Ciara (0)
-
& Abreu-Ramos, E. D. (0)
-
& Abramson, C. I. (0)
-
& Abreu-Ramos, E. D. (0)
-
- Filter by Editor
-
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
(submitted - in Review for IEEE ICASSP-2024) (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
ABSTRACT Genetic rescue, specifically translocation to facilitate gene flow among populations and reduce the effects of inbreeding, is an increasingly used approach in conservation. However, this approach comes with trade‐offs, wherein gene flow may reduce fitness when populations have adaptive differentiation (i.e., outbreeding depression). A better understanding of the interaction between isolation, inbreeding, and adaptive divergence in key traits, such as life history traits, will help to inform genetic rescue efforts. Stream‐dwelling salmonids, such as the westslope cutthroat trout (Oncorhynchus lewisi; WCT), are well‐suited for examining these trade‐offs because they are increasingly isolated by habitat degradation, exhibit substantial variation in life history traits among populations, and include many species of conservation concern. However, few genomic studies have examined the potential trade‐offs in inbreeding versus outbreeding depression in salmonids. We used > 150,000 SNPs to examine genomic variation and inbreeding coefficients in 565 individuals across 25 WCT populations that differed in their isolation status and demographic histories. Analyses of runs of homozygosity revealed that several isolated WCT populations had “flatlined” having extremely low genetic variation and high inbreeding coefficients. Additionally, we conducted genome scans to identify potential outlier loci that could explain life history differences among 10 isolated populations. Genome scans identified one candidate genomic region that influenced maximum length and age‐1 to age‐2 growth. However, the limited number of candidate loci suggests that the life history traits examined may be driven by many genes of small effect or phenotypic plasticity. Although adaptive differentiation should be considered, the high inbreeding coefficients in several populations suggest that genetic rescue may benefit the most genetically depauperate WCT populations.more » « lessFree, publicly-accessible full text available March 1, 2026
-
Kovach, Ryan P; Leary, Robb F; Bell, Donovan A; Painter, Sally; Lodmell, Angela; Whiteley, Andrew R (, Canadian Journal of Fisheries and Aquatic Sciences)Although human fragmentation of freshwater habitats is ubiquitous, the genetic consequences of isolation and a roadmap to address them are poorly documented for most fishes. This is unfortunate, because translocation for genetic rescue could help mitigate problems. We used genetic data (32 SNPs) from 203 populations of westslope cutthroat trout (Oncorhynchus clarkii lewisi) to (1) document the effect of fragmentation on genetic variation and population structure, (2) identify candidate populations for genetic rescue, and (3) quantify the potential benefits of strategic translocation efforts. Human-isolated populations had substantially lower genetic variation and elevated genetic differentiation, indicating that many populations are strongly influenced by random genetic drift. Based on simple criteria, 23 populations were candidates for genetic rescue, which represented a majority (51%) of suitable populations in one major region (Missouri drainage). Population genetic theory suggests that translocation of a small number of individuals (∼5 adults) from nearby populations could dramatically increase heterozygosity by up to 58% (average across populations). This effort provides a clear template for future conservation of westslope cutthroat trout, while simultaneously highlighting the potential need for similar efforts in many freshwater species.more » « less
An official website of the United States government
